Biomedicine & Pharmacotherapy (Aug 2024)

Combination of RNA-seq and proteomics reveals the mechanism of DL0410 treatment in APP/PS1 transgenic mouse model of Alzheimer's disease

  • Baoyue Zhang,
  • Jun Zhao,
  • Caiqin Yan,
  • Yiming Bai,
  • Pengfei Guo,
  • Chao Wang,
  • Zhe Wang,
  • Guanhua Du,
  • Ailin Liu

Journal volume & issue
Vol. 177
p. 116940

Abstract

Read online

There is a lack of a systematic understanding of the specific mechanism of action of DL0410 in AD treatment. In this study, the combination of RNA-seq and proteomics was firstly employed to uncover the mechanism of action of DL0410 in APP/PS1 transgenic mice. The results of behavioral tests showed that oral administration of DL0410 for 8 weeks improved memory and cognition of APP/PS1 mice. DL0410 significantly reduced β-amyloid deposition and resulted in significant upregulation of synaptophysin, PSD95 and NMDAR/ CaMKⅡ signaling pathway in the hippocampus and cortex, indicating that DL0410 improved synaptic plasticity in APP/PS1 mice, which agrees with the results of RNA-seq and proteomics. Furthermore, the enrichment results of differentially expressed genes identified by RNA-seq and proteomics demonstrate the potential protective effects of DL0410 against oxidative stress and mitochondrial dysfunction. As expected, DL0410 dose-dependently ameliorated oxidative damage and markedly increased the expression of PGC-1α, TFAM, SOD1 and SOD2. Mitochondrial high-resolution respirometry results revealed that mitochondrial respiratory function was significantly improved in APP/PS1 mice administered with DL0410. In addition, DL0410 treatment reduced oxidative damage, strengthened antioxidant system and improved mitochondrial function in Aβ-induced HT22 cells. Altogether, our findings suggest the potential of DL0410 as a novel candidate for AD treatment.

Keywords