Applied Sciences (Jun 2023)

Joint Radar-Communication Optimization of Distributed Airborne Radar for AOA Localization

  • Gangsong Ding,
  • Qinhao Wu,
  • Yutao Hu,
  • Jianfeng Yin,
  • Shengtao Wen

DOI
https://doi.org/10.3390/app13137709
Journal volume & issue
Vol. 13, no. 13
p. 7709

Abstract

Read online

Compared to the distributed ground-based radar (DGBR), the distributed airborne radar (DAR) has been widely applied due to its stronger anti-damage ability, more degrees of freedom, and better detection view of targets. However, unlike DGBR, the premise for the normal operation of DAR is to maintain stable wireless communication between unmanned aerial vehicles (UAVs). This requires each UAV to make reasonable use of its electromagnetic domain resources. That is, to maximize radar detection performance while ensuring communication performance constraints. However, current research in the field of radar resource allocation has not taken this into account, which greatly limits the practical application of optimization algorithms. Moreover, the current research tends to adopt centralized optimization algorithms. When the baseline of the UAV swarm is long, applying multi-relay methods directly results in heavy communications overhead and long-time delay. Based on the above background, this article aimed to develop a fully distributed algorithm for the joint optimization of radar detection performance and communication transmission performance. This study first took the measurement angle of arrival (AOA) as an example to provide a system model with communication constraints. This model considers the impact of factors such as the UAV location error, UAV communication coverage, and dynamic communication topology of the UAV on joint optimization. A formal representation of the joint optimization is presented. Then, we proposed a joint radar-communication optimization (JRCO) algorithm to fully utilize the electromagnetic domain resources of each UAV. Finally, numerical simulations verified the effectiveness of the proposed JRCO algorithm to traditional radar resource allocation methods.

Keywords