Chemosensors (Aug 2024)

Fiber Optic-Based Portable Sensor for Rapid Evaluation and In Situ Real-Time Sensing of Scale Formation in Geothermal Water

  • Takuma Matsuura,
  • Takuya Okazaki,
  • Kazuto Sazawa,
  • Ai Hosoki,
  • Akira Ueda,
  • Hideki Kuramitz

DOI
https://doi.org/10.3390/chemosensors12090171
Journal volume & issue
Vol. 12, no. 9
p. 171

Abstract

Read online

The formation of scale in hot springs and geothermal brines can be detected quickly and easily using optical fiber-based scale sensors. This paper describes the development of a portable sensor for the in situ detection of scale in geothermal water. This sensor was used to detect the formation of calcium carbonate and silica scale and to assess the effectiveness of their inhibitors. The performance of the sensor was evaluated using calcium carbonate scale. In laboratory experiments using both the newly developed sensor and a conventional nonportable sensor, the strength of the transmitted signal was found to decrease significantly as the amount of scale increased. It was considered that this sensor can accurately evaluate only scale formation without being affected by turbidity. The scale that was deposited on each material (optical fiber core, glass plate, polyvinyl chloride (PVC), and SUS304) was observed using a shape analysis laser microscope. Based on these observations, we concluded that this sensor could be used to predict the amount of scale deposited in real time. In situ evaluation of the sensor was conducted at a blowout carbonated hot spring on Rishiri Island, which is located off the coast of Hokkaido, Japan. The results obtained from experiments using hot spring water showed a similar sensor response within a comparable time range as those obtained from the laboratory experiments. The results of this study thus demonstrate that this novel portable scale sensor is suitable for use in geothermal power plants and investigating effectiveness of inhibiters under different conditions.

Keywords