Plants (May 2022)

Genome-Wide Identification and Expression Analysis of Homeodomain Leucine Zipper Subfamily IV (HD-ZIP IV) Gene Family in <i>Cannabis sativa</i> L.

  • Gang Ma,
  • Alice Kira Zelman,
  • Peter V. Apicella,
  • Gerald Berkowitz

DOI
https://doi.org/10.3390/plants11101307
Journal volume & issue
Vol. 11, no. 10
p. 1307

Abstract

Read online

The plant-specific homeodomain zipper family (HD-ZIP) of transcription factors plays central roles in regulating plant development and environmental resistance. HD-ZIP transcription factors IV (HDZ IV) have been involved primarily in the regulation of epidermal structure development, such as stomata and trichomes. In our study, we identified nine HDZ IV-encoding genes in Cannabis sativa L. by conducting a computational analysis of cannabis genome resources. Our analysis suggests that these genes putatively encode proteins that have all the conserved domains of HDZ IV transcription factors. The phylogenetic analysis of HDZ IV gene family members of cannabis, rice (Oryza sativa), and Arabidopsis further implies that they might have followed distinct evolutionary paths after divergence from a common ancestor. All the identified cannabis HDZ IV gene promoter sequences have multiple regulation motifs, such as light- and hormone-responsive elements. Furthermore, experimental evidence shows that different HDZ IV genes have different expression patterns in root, stem, leaf, and flower tissues. Four genes were primarily expressed in flowers, and the expression of CsHDG5 (XP_030501222.1) was also correlated with flower maturity. Fifty-nine genes were predicted as targets of HDZ IV transcription factors. Some of these genes play central roles in pathogen response, flower development, and brassinosteroid signaling. A subcellular localization assay indicated that one gene of this family is localized in the Arabidopsis protoplast nucleus. Taken together, our work lays fundamental groundwork to illuminate the function of cannabis HDZ IV genes and their possible future uses in increasing cannabis trichome morphogenesis and secondary metabolite production.

Keywords