International Journal of Geo-Engineering (May 2021)

Analysis of reinforced retaining wall failure based on reinforcement length

  • Suk -Min Kong,
  • Dong-Wook Oh,
  • So-Yeon Lee,
  • Hyuk-Sang Jung,
  • Yong-Joo Lee

DOI
https://doi.org/10.1186/s40703-021-00143-6
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Reinforced retaining walls are structures constructed horizontally to resist earth pressure by leveraging the frictional force imparted by the backfill. Reinforcements are employed because they exhibit excellent safety and economic efficiency. However, insufficient reinforcement can lead to collapse, and excessive reinforcement reduces economic efficiency. Therefore, it is important to select the appropriate type, length, and spacing of reinforcements. However, in actual sites, although the stress and fracture mechanisms in the straight and curved sections of reinforced soil retaining walls differ, the same amount of reinforcements are typically installed. Such an approach can lead to wall collapse or reduce economic feasibility. Therefore, in this study, the behaviours of straight and curved sections fortified with reinforcements of various lengths (1, 3, 5, and 7 m) are predicted through a three-dimensional numerical analysis. The retaining walls are of the same height, but the reinforcement variations in the aforementioned sections influence the wall behaviour differently. Based on the results, the optimum reinforcement lengths for the straight and curved parts were selected. By installing reinforcements of different lengths in these sections, the maximum reinforcing effect with minimum reinforcement was derived. This study further found that the curved section of the wall required more reinforcements, and the reinforcement lengths for the curved and straight sections should be separately optimized.

Keywords