Translational Oncology (Jul 2022)

Long non-coding RNA ZNF667-AS1 retards the development of esophageal squamous cell carcinoma via modulation of microRNA-1290-mediated PRUNE2

  • Ying-Juan Zheng,
  • Tian-Song Liang,
  • Juan Wang,
  • Jing-Yi Zhao,
  • Su-Nan Zhai,
  • Dao-Ke Yang,
  • Li-Dong Wang

Journal volume & issue
Vol. 21
p. 101371

Abstract

Read online

Abnormal long non-coding RNAs (lncRNAs) have been detected in esophageal squamous cell carcinoma (ESCC). Here, we focused on lncRNA ZNF667-AS1 and its downstream mechanism in ESCC progression. Differentially expressed lncRNAs in ESCC were predicted by bioinformatics analysis. ZNF667-AS1, microRNA-1290 (miR-1290), and prune homolog 2 with BCH domain (PRUNE2) expression was determined with their relationship in cell biological processes analyzed also by means of gain- and loss-of-function assays. Xenograft mouse models were performed to re-produce the in vitro findings. We found a decline in ZNF667-AS1 expression in ESCC tissues and cell lines. ZNF667-AS1 overexpression indicated a favorable prognosis of ESCC sufferers. ZNF667-AS1 overexpression suppressed ESCC cell malignant potentials. ZNF667-AS1 reduced miR-1290 to result in upregulation of the miR-1290 target gene PRUNE2. The inhibiting property of ZNF667-AS1 on the malignant characteristics of ESCC cells was achieved by disrupting the miR-1290-mediated downregulation of PRUNE2. ZNF667-AS1 suppressed the tumorigenesis of ESCC in vivo. Collectively, our study demonstrates that ZNF667-AS1 can function as a tumor suppressor in ESCC by upregulating PRUNE2 and downregulating miR-1290.

Keywords