Fixed Point Theory and Applications (Jan 2011)
An Implicit Hierarchical Fixed-Point Approach to General Variational Inequalities in Hilbert Spaces
Abstract
Abstract Let be a nonempty closed convex subset of a real Hilbert space . Let be a -Lipschitzian and -strongly monotone operator with constants , be nonexpansive mappings with where denotes the fixed-point set of , and be a -contraction with coefficient . Let and , where . For each , let be a unique solution of the fixed-point equation . We derive the following conclusions on the behavior of the net along the curve : (i) if , as , then strongly, which is the unique solution of the variational inequality of finding such that and (ii) if , as , then strongly, which is the unique solution of some hierarchical variational inequality problem.