Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain; Correspondence to: Departamento de Bioquímica, Biología Celular y Molecular de Plantas Estación Experimental del Zaidín (CSIC), C/ Profesor Albareda, 1, E-18008 Granada, Spain
Juan B. Barroso
Biochemistry and Cell Signaling in Nitric Oxide Group, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario “Las Lagunillas” s/n, University of Jaén, E-23071 Jaén, Spain
José M. Palma
Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain
Marta Rodriguez-Ruiz
Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain
Although peroxisomes are very simple organelles, research on different species has provided us with an understanding of their importance in terms of cell viability. In addition to the significant role played by plant peroxisomes in the metabolism of reactive oxygen species (ROS), data gathered over the last two decades show that these organelles are an endogenous source of nitric oxide (NO) and related molecules called reactive nitrogen species (RNS). Molecules such as NO and H2O2 act as retrograde signals among the different cellular compartments, thus facilitating integral cellular adaptation to physiological and environmental changes. However, under nitro-oxidative conditions, part of this network can be overloaded, possibly leading to cellular damage and even cell death. This review aims to update our knowledge of the ROS/RNS metabolism, whose important role in plant peroxisomes is still underestimated. However, this pioneering approach, in which key elements such as β-oxidation, superoxide dismutase (SOD) and NO have been mainly described in relation to plant peroxisomes, could also be used to explore peroxisomes from other organisms. Key words: Hydrogen peroxide, Nitric oxide, Peroxisomes, Peroxynitrite, Reactive oxygen species, Reactive nitrogen species