EURASIP Journal on Audio, Speech, and Music Processing (Oct 2022)

AUC optimization for deep learning-based voice activity detection

  • Xiao-Lei Zhang,
  • Menglong Xu

DOI
https://doi.org/10.1186/s13636-022-00260-9
Journal volume & issue
Vol. 2022, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Voice activity detection (VAD) based on deep neural networks (DNN) have demonstrated good performance in adverse acoustic environments. Current DNN-based VAD optimizes a surrogate function, e.g., minimum cross-entropy or minimum squared error, at a given decision threshold. However, VAD usually works on-the-fly with a dynamic decision threshold, and the receiver operating characteristic (ROC) curve is a global evaluation metric for VAD at all possible decision thresholds. In this paper, we propose to maximize the area under the ROC curve (MaxAUC) by DNN, which can maximize the performance of VAD in terms of the entire ROC curve. However, the objective of the AUC maximization is nondifferentiable. To overcome this difficulty, we relax the nondifferentiable loss function to two differentiable approximation functions—sigmoid loss and hinge loss. To study the effectiveness of the proposed MaxAUC-DNN VAD, we take either a standard feedforward neural network or a bidirectional long short-term memory network as the DNN model with either the state-of-the-art multi-resolution cochleagram or short-term Fourier transform as the acoustic feature. We conducted noise-independent training to all comparison methods. Experimental results show that taking AUC as the optimization objective results in higher performance than the common objectives of the minimum squared error and minimum cross-entropy. The experimental conclusion is consistent across different DNN structures, acoustic features, noise scenarios, training sets, and languages.

Keywords