International Journal of Molecular Sciences (Oct 2018)

Construction and Characterization of Phthalocyanine-Loaded Particles of Curdlan and Their Photosensitivity

  • Zonglin Liu,
  • Dongfeng Wang,
  • Xun Sun,
  • Qingjie Sun,
  • Yanjiang Wu,
  • Ying Xu

DOI
https://doi.org/10.3390/ijms19113323
Journal volume & issue
Vol. 19, no. 11
p. 3323

Abstract

Read online

To optimize the physicochemical properties of phthalocyanine (PC), we examined its behavior in particles of triple helix glucan curdlan (CUR). CUR was denatured and renatured in DMSO, in the presence of PC. Infrared spectroscopy and transmission electron microscopy (TEM) showed that PC and CUR formed an inclusion complex, in which PC was trapped inside CUR molecules. This redshifted the absorption peak of PC, which would improve its usefulness as a photosensitizer, because infrared light can penetrate more deeply into human tissues. The conductivity of the solution of CUR-PC was higher than the conductivities of either a CUR solution or a PC dispersion, indicating that CUR-PC is more water soluble than PC. In addition, CUR-PC was highly stable in water. Thus, the use of CUR as a carrier of PC improves several of its physical properties. PC is used as a photosensitizer for killing cancer cells, but its use is hampered by its low solubility. Further, its absorption range limits its use to a depth of 1⁻3 mm in tissues. CUR-PC, with its high solubility and infrared absorption peak, was highly effective as a photosensitizer. It killed 84% of HeLa cells under 15 min of long wavelength radiation and had little cytotoxicity in the absence of light. These results demonstrate that CUR-PC has promise as a photosensitizer, as well as provide theoretical support for a wide range of applications for PC and CUR.

Keywords