Nature Communications (Jun 2022)

HarmonizR enables data harmonization across independent proteomic datasets with appropriate handling of missing values

  • Hannah Voß,
  • Simon Schlumbohm,
  • Philip Barwikowski,
  • Marcus Wurlitzer,
  • Matthias Dottermusch,
  • Philipp Neumann,
  • Hartmut Schlüter,
  • Julia E. Neumann,
  • Christoph Krisp

DOI
https://doi.org/10.1038/s41467-022-31007-x
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 15

Abstract

Read online

Dataset integration is common practice to overcome limitations in statistically underpowered omics datasets. Here the authors present “HarmonizR”, a tool for missing data tolerant experimental variance reduction in large, integrated but independently generated datasets without data imputation, adjustable for individual dataset modalities, correction algorithm, and user preferences.