Communications Medicine (Oct 2022)

A mobile-optimized artificial intelligence system for gestational age and fetal malpresentation assessment

  • Ryan G. Gomes,
  • Bellington Vwalika,
  • Chace Lee,
  • Angelica Willis,
  • Marcin Sieniek,
  • Joan T. Price,
  • Christina Chen,
  • Margaret P. Kasaro,
  • James A. Taylor,
  • Elizabeth M. Stringer,
  • Scott Mayer McKinney,
  • Ntazana Sindano,
  • George E. Dahl,
  • William Goodnight,
  • Justin Gilmer,
  • Benjamin H. Chi,
  • Charles Lau,
  • Terry Spitz,
  • T. Saensuksopa,
  • Kris Liu,
  • Tiya Tiyasirichokchai,
  • Jonny Wong,
  • Rory Pilgrim,
  • Akib Uddin,
  • Greg Corrado,
  • Lily Peng,
  • Katherine Chou,
  • Daniel Tse,
  • Jeffrey S. A. Stringer,
  • Shravya Shetty

DOI
https://doi.org/10.1038/s43856-022-00194-5
Journal volume & issue
Vol. 2, no. 1
pp. 1 – 9

Abstract

Read online

Gomes et al. develop machine learning models for gestational age and fetal malpresentation assessment on fetal ultrasound. The authors optimize their system for use in low-resource settings, using novice ultrasound operators, simplified imaging protocols, and low cost ultrasound devices.