Phytochemical Profile and Herbicidal (Phytotoxic), Antioxidants Potential of Essential Oils from <i>Calycolpus goetheanus</i> (Myrtaceae) Specimens, and in Silico Study
Celeste de Jesus Pereira Franco,
Oberdan Oliveira Ferreira,
Jorddy Neves Cruz,
Everton Luiz Pompeu Varela,
Ângelo Antônio Barbosa de Moraes,
Lidiane Diniz do Nascimento,
Márcia Moraes Cascaes,
Antônio Pedro da Silva Souza Filho,
Rafael Rodrigues Lima,
Sandro Percário,
Mozaniel Santana de Oliveira,
Eloisa Helena de Aguiar Andrade
Affiliations
Celeste de Jesus Pereira Franco
Faculdade de Química, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil
Oberdan Oliveira Ferreira
Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede Bionorte, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil
Jorddy Neves Cruz
Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil
Everton Luiz Pompeu Varela
Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede Bionorte, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil
Ângelo Antônio Barbosa de Moraes
Faculdade de Química, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil
Lidiane Diniz do Nascimento
Laboratório Adolpho Ducke—Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, Pará, Brazil
Márcia Moraes Cascaes
Programa de Pós-Graduação em Química, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil
Antônio Pedro da Silva Souza Filho
Embrapa Amazônia Oriental, Tv. Dr. Enéas Pinheiro, s/n-Marco, Belém 66095-903, Pará, Brazil
Rafael Rodrigues Lima
Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil
Sandro Percário
Laboratório de Pesquisas em Estresse Oxidativo, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil
Mozaniel Santana de Oliveira
Laboratório Adolpho Ducke—Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, Pará, Brazil
Eloisa Helena de Aguiar Andrade
Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede Bionorte, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, Pará, Brazil
The essential oil (EO) of Calycolpus goetheanus (Myrtaceae) specimens (A, B, and C) were obtained through hydrodistillation. The analysis of the chemical composition of the EOs was by gas chromatography coupled with mass spectrometry CG-MS, and gas chromatography coupled with a flame ionization detector CG-FID. The phytotoxic activity of those EOs was evaluated against two weed species from common pasture areas in the Amazon region: Mimosa pudica L. and Senna obtusifolia (L.) The antioxidant capacity of the EOs was determined by (DPPH•) and (ABTS•+). Using molecular docking, we evaluated the interaction mode of the major EO compounds with the molecular binding protein 4-hydroxyphenylpyruvate dioxygenase (HPPD). The EO of specimen A was characterized by β-eudesmol (22.83%), (E)-caryophyllene (14.61%), and γ-eudesmol (13.87%), while compounds 1,8-cineole (8.64%), (E)-caryophyllene (5.86%), δ-cadinene (5.78%), and palustrol (4.97%) characterize the chemical profile of specimen B’s EOs, and specimen C had α-cadinol (9.03%), δ-cadinene (8.01%), and (E)-caryophyllene (6.74%) as the majority. The phytotoxic potential of the EOs was observed in the receptor species M. pudica with percentages of inhibition of 30%, and 33.33% for specimens B and C, respectively. The EOs’ antioxidant in DPPH• was 0.79 ± 0.08 and 0.83 ± 0.02 mM for specimens A and B, respectively. In the TEAC, was 0.07 ± 0.02 mM for specimen A and 0.12 ± 0.06 mM for specimen B. In the results of the in silico study, we observed that the van der Waals and hydrophobic interactions of the alkyl and pi-alkyl types were the main interactions responsible for the formation of the receptor–ligand complex.