Advances in High Energy Physics (Jan 2016)

Current Status and Future Prospects of the SNO+ Experiment

  • S. Andringa,
  • E. Arushanova,
  • S. Asahi,
  • M. Askins,
  • D. J. Auty,
  • A. R. Back,
  • Z. Barnard,
  • N. Barros,
  • E. W. Beier,
  • A. Bialek,
  • S. D. Biller,
  • E. Blucher,
  • R. Bonventre,
  • D. Braid,
  • E. Caden,
  • E. Callaghan,
  • J. Caravaca,
  • J. Carvalho,
  • L. Cavalli,
  • D. Chauhan,
  • M. Chen,
  • O. Chkvorets,
  • K. Clark,
  • B. Cleveland,
  • I. T. Coulter,
  • D. Cressy,
  • X. Dai,
  • C. Darrach,
  • B. Davis-Purcell,
  • R. Deen,
  • M. M. Depatie,
  • F. Descamps,
  • F. Di Lodovico,
  • N. Duhaime,
  • F. Duncan,
  • J. Dunger,
  • E. Falk,
  • N. Fatemighomi,
  • R. Ford,
  • P. Gorel,
  • C. Grant,
  • S. Grullon,
  • E. Guillian,
  • A. L. Hallin,
  • D. Hallman,
  • S. Hans,
  • J. Hartnell,
  • P. Harvey,
  • M. Hedayatipour,
  • W. J. Heintzelman,
  • R. L. Helmer,
  • B. Hreljac,
  • J. Hu,
  • T. Iida,
  • C. M. Jackson,
  • N. A. Jelley,
  • C. Jillings,
  • C. Jones,
  • P. G. Jones,
  • K. Kamdin,
  • T. Kaptanoglu,
  • J. Kaspar,
  • P. Keener,
  • P. Khaghani,
  • L. Kippenbrock,
  • J. R. Klein,
  • R. Knapik,
  • J. N. Kofron,
  • L. L. Kormos,
  • S. Korte,
  • C. Kraus,
  • C. B. Krauss,
  • K. Labe,
  • I. Lam,
  • C. Lan,
  • B. J. Land,
  • S. Langrock,
  • A. LaTorre,
  • I. Lawson,
  • G. M. Lefeuvre,
  • E. J. Leming,
  • J. Lidgard,
  • X. Liu,
  • Y. Liu,
  • V. Lozza,
  • S. Maguire,
  • A. Maio,
  • K. Majumdar,
  • S. Manecki,
  • J. Maneira,
  • E. Marzec,
  • A. Mastbaum,
  • N. McCauley,
  • A. B. McDonald,
  • J. E. McMillan,
  • P. Mekarski,
  • C. Miller,
  • Y. Mohan,
  • E. Mony,
  • M. J. Mottram,
  • V. Novikov,
  • H. M. O’Keeffe,
  • E. O’Sullivan,
  • G. D. Orebi Gann,
  • M. J. Parnell,
  • S. J. M. Peeters,
  • T. Pershing,
  • Z. Petriw,
  • G. Prior,
  • J. C. Prouty,
  • S. Quirk,
  • A. Reichold,
  • A. Robertson,
  • J. Rose,
  • R. Rosero,
  • P. M. Rost,
  • J. Rumleskie,
  • M. A. Schumaker,
  • M. H. Schwendener,
  • D. Scislowski,
  • J. Secrest,
  • M. Seddighin,
  • L. Segui,
  • S. Seibert,
  • T. Shantz,
  • T. M. Shokair,
  • L. Sibley,
  • J. R. Sinclair,
  • K. Singh,
  • P. Skensved,
  • A. Sörensen,
  • T. Sonley,
  • R. Stainforth,
  • M. Strait,
  • M. I. Stringer,
  • R. Svoboda,
  • J. Tatar,
  • L. Tian,
  • N. Tolich,
  • J. Tseng,
  • H. W. C. Tseung,
  • R. Van Berg,
  • E. Vázquez-Jáuregui,
  • C. Virtue,
  • B. von Krosigk,
  • J. M. G. Walker,
  • M. Walker,
  • O. Wasalski,
  • J. Waterfield,
  • R. F. White,
  • J. R. Wilson,
  • T. J. Winchester,
  • A. Wright,
  • M. Yeh,
  • T. Zhao,
  • K. Zuber

DOI
https://doi.org/10.1155/2016/6194250
Journal volume & issue
Vol. 2016

Abstract

Read online

SNO+ is a large liquid scintillator-based experiment located 2 km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12 m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0νββ) of 130Te. In Phase I, the detector will be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of 130Te, with an expected effective Majorana neutrino mass sensitivity in the region of 55–133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The 0νββ Phase I is foreseen for 2017.