PLoS ONE (Jan 2017)

Ligand binding at the A-cluster in full-length or truncated acetyl-CoA synthase studied by X-ray absorption spectroscopy.

  • Peer Schrapers,
  • Julia Ilina,
  • Christina M Gregg,
  • Stefan Mebs,
  • Jae-Hun Jeoung,
  • Holger Dau,
  • Holger Dobbek,
  • Michael Haumann

DOI
https://doi.org/10.1371/journal.pone.0171039
Journal volume & issue
Vol. 12, no. 2
p. e0171039

Abstract

Read online

Bacteria integrate CO2 reduction and acetyl coenzyme-A (CoA) synthesis in the Wood-Ljungdal pathway. The acetyl-CoA synthase (ACS) active site is a [4Fe4S]-[NiNi] complex (A-cluster). The dinickel site structure (with proximal, p, and distal, d, ions) was studied by X-ray absorption spectroscopy in ACS variants comprising all three protein domains or only the C-terminal domain with the A-cluster. Both variants showed two square-planar Ni(II) sites and an OH- bound at Ni(II)p in oxidized enzyme and a H2O at Ni(I)p in reduced enzyme; a Ni(I)p-CO species was induced by CO incubation and a Ni(II)-CH3- species with an additional water ligand by a methyl group donor. These findings render a direct effect of the N-terminal and middle domains on the A-cluster structure unlikely.