Advanced Pharmaceutical Bulletin (Nov 2023)

Targeted Delivery of Pennyroyal via Methotrexate Functionalized PEGylated Nanostructured Lipid Carriers into Breast Cancer Cells; A Multiple Pathways Apoptosis Activator

  • Amin Mahoutforoush,
  • Leila Asadollahi,
  • Hamed Hamishehkar,
  • Soheil Abbaspour-Ravasjani,
  • Atefeh Solouk,
  • Masoumeh Haghbin Nazarpak

DOI
https://doi.org/10.34172/apb.2023.077
Journal volume & issue
Vol. 13, no. 4
pp. 747 – 760

Abstract

Read online

Purpose: Pennyroyal is a species of the Lamiaceae family with potent anti-cancer and antioxidant properties. Combining this antioxidant with chemotherapeutic agents enhances the effectiveness of these agents by inducing more apoptosis in cancerous cells. Methods: Here, methotrexate (MTX) combined with pennyroyal oil based on PEGylated nanostructured lipid carriers (NLCs) was assessed. These nanoparticles were physiochemically characterized, and their anti-cancer effects and targeting efficiency were investigated on the folate receptor-positive human breast cancer cell line (MCF-7) and negative human alveolar basal epithelial cells (A549). Results: Results showed a mean size of 97.4±12.1 nm for non-targeted PEGylated NLCs and 220.4±11.4 nm for targeted PEGylated NLCs, with an almost small size distribution assessed by TEM imaging. Furthermore, in vitro molecular anti-cancer activity investigations showed that pennyroyal-NLCs and pennyroyal-NLCs/MTX activate the apoptosis and autophagy pathway by changing their related mRNA expression levels. Furthermore, in vitro cellular studies showed that these changes in the level of gene expression could lead to a rise in apoptosis rate from 15.6±8.1 to 25.0±3.2 (P<0.05) for the MCF-7 cells treated with pennyroyal-NLCs and pennyroyal-NLCs/MTX, respectively. Autophagy and reactive oxygen species (ROS) cellular evaluation indicated that treating the cells with pennyroyal-NLCs and pennyroyal-NLCs/MTX could significantly increase their intensity in these cells. Conclusion: Our results present a new NLCs-based approach to enhance the delivery of pennyroyal and MTX to cancerous breast tissues.

Keywords