Applied Sciences (Dec 2017)

A Three-Axis Magnetic Field Microsensor Fabricated Utilizing a CMOS Process

  • Jian-Zhi Tseng,
  • Po-Jen Shih,
  • Cheng-Chih Hsu,
  • Ching-Liang Dai

DOI
https://doi.org/10.3390/app7121289
Journal volume & issue
Vol. 7, no. 12
p. 1289

Abstract

Read online

This study develops a three-axis magnetic field (MF) microsensor manufactured by a complementary metal oxide semiconductor (CMOS) process. The MF microsensor contains a ring emitter, four bases, and eight collectors. Sentaurus TCAD was used to simulate the microsensor characterization. The STI (shallow trench isolation) oxide in the process was used to limit the current direction and reduce leakage current. The microsensor produces a voltage difference once it senses a magnetic field. An amplifier circuitry magnifies voltage difference into a voltage output. Experiments reveals that the MF microsensor has a sensitivity of 1.45 V/T along the x-axis and a sensitivity of 1.37 V/T along the y-axis.

Keywords