Humboldtian Diagnosis of Peach Tree (<i>Prunus persica</i>) Nutrition Using Machine-Learning and Compositional Methods
Debora Leitzke Betemps,
Betania Vahl de Paula,
Serge-Étienne Parent,
Simone P. Galarça,
Newton A. Mayer,
Gilmar A.B. Marodin,
Danilo E. Rozane,
William Natale,
George Wellington B. Melo,
Léon E. Parent,
Gustavo Brunetto
Affiliations
Debora Leitzke Betemps
Departamento dos Solos, Universidade Federal de Santa Maria, Av. Roraima, 1000 Camobi, Santa Maria, RS 97105-900, Brazil
Betania Vahl de Paula
Departamento dos Solos, Universidade Federal de Santa Maria, Av. Roraima, 1000 Camobi, Santa Maria, RS 97105-900, Brazil
Serge-Étienne Parent
Department of Soils and Agrifood Engineering, Laval University, Québec, QC G1V 0A6, Canada
Simone P. Galarça
Ascar Emater—Piratini, Rua 20 de Setembro, 158-Centro, Piratini, RS 96490-000, Brazil
Newton A. Mayer
Embrapa Clima Temperado, Centro de Pesquisa Agropecuária de Clima Temperado, BR 392, km 78, Monte Bonito, Pelotas, RS 96010971, Brazil
Gilmar A.B. Marodin
Departemento de Horticultura e Silvicultura, Universidade Federal do Rio Grande do Sul, av. Bento Gonçalves 7712, C.P. 15.100, Agronomia, Porto Alegre, RS 91540000, Brazil
Danilo E. Rozane
Departamento de Engenharia Agronômica, Universidade Estadual de São Paulo (UNESP), Campus de Registro, Av. Nelson Brihi Badur, Registro, SP 11.900-000, Brazil
William Natale
Departamento de Fitotecnia, Universidade Federal do Ceará (UFC), Av. Mister Hull, 2977-Campus do Pici, Fortaleza, CE 60356-000, Brazil
George Wellington B. Melo
Embrapa Uva e Vinho, Rua Livramento, 515, Bento Gonçalves, RS 95701-008, Brazil
Léon E. Parent
Departamento dos Solos, Universidade Federal de Santa Maria, Av. Roraima, 1000 Camobi, Santa Maria, RS 97105-900, Brazil
Gustavo Brunetto
Departamento dos Solos, Universidade Federal de Santa Maria, Av. Roraima, 1000 Camobi, Santa Maria, RS 97105-900, Brazil
Regional nutrient ranges are commonly used to diagnose plant nutrient status. In contrast, local diagnosis confronts unhealthy to healthy compositional entities in comparable surroundings. Robust local diagnosis requires well-documented data sets processed by machine learning and compositional methods. Our objective was to customize nutrient diagnosis of peach (Prunus persica) trees at local scale. We collected 472 observations from commercial orchards and fertilizer trials across eleven cultivars of Prunus persica and six rootstocks in the state of Rio Grande do Sul (RS), Brazil. The random forest classification model returned an area under curve exceeding 0.80 and classification accuracy of 80% about yield cutoff of 16 Mg ha−1. Centered log ratios (clr) of foliar defective compositions have appropriate geometry to compute Euclidean distances from closest successful compositions in “enchanting islands”. Successful specimens closest to defective specimens as shown by Euclidean distance allowed reaching trustful fruit yields using site-specific corrective measures. Comparing tissue composition of low-yielding orchards to that of the closest successful neighbors in two major Brazilian peach-producing regions, regional diagnosis differed from local diagnosis, indicating that regional standards may fail to fit local conditions. Local diagnosis requires well-documented Humboldtian data sets that can be acquired through ethical collaboration between researchers and stakeholders.