Molecules (Jul 2021)

Added-Value Chemicals from Lignin Oxidation

  • Carina A. Esteves Costa,
  • Carlos A. Vega-Aguilar,
  • Alírio E. Rodrigues

DOI
https://doi.org/10.3390/molecules26154602
Journal volume & issue
Vol. 26, no. 15
p. 4602

Abstract

Read online

Lignin is the second most abundant component, next to cellulose, in lignocellulosic biomass. Large amounts of this polymer are produced annually in the pulp and paper industries as a coproduct from the cooking process—most of it burned as fuel for energy. Strategies regarding lignin valorization have attracted significant attention over the recent decades due to lignin’s aromatic structure. Oxidative depolymerization allows converting lignin into added-value compounds, as phenolic monomers and/or dicarboxylic acids, which could be an excellent alternative to aromatic petrochemicals. However, the major challenge is to enhance the reactivity and selectivity of the lignin structure towards depolymerization and prevent condensation reactions. This review includes a comprehensive overview of the main contributions of lignin valorization through oxidative depolymerization to produce added-value compounds (vanillin and syringaldehyde) that have been developed over the recent decades in the LSRE group. An evaluation of the valuable products obtained from oxidation in an alkaline medium with oxygen of lignins and liquors from different sources and delignification processes is also provided. A review of C4 dicarboxylic acids obtained from lignin oxidation is also included, emphasizing catalytic conversion by O2 or H2O2 oxidation.

Keywords