Mathematics (May 2025)
Physics-Informed Neural Networks for the Structural Analysis and Monitoring of Railway Bridges: A Systematic Review
Abstract
Physics-informed neural networks (PINNs) offer a mesh-free approach to solving partial differential equations (PDEs) with embedded physical constraints. Although PINNs have gained traction in various engineering fields, their adoption for railway bridge analysis remains under-explored. To address this gap, a systematic review was conducted across Scopus and Web of Science (2020–2025), filtering records by relevance, journal impact, and language. From an initial pool, 120 articles were selected and categorised into nine thematic clusters that encompass computational frameworks, hybrid integration with conventional solvers, and domain decomposition strategies. Through natural language processing (NLP) and trend mapping, this review evidences a growing but fragmented research landscape. PINNs demonstrate promising capabilities in load distribution modelling, structural health monitoring, and failure prediction, particularly under dynamic train loads on multi-span bridges. However, methodological gaps persist in large-scale simulations, plasticity modelling, and experimental validation. Future work should focus on scalable PINN architectures, refined modelling of inelastic behaviours, and real-time data assimilation, ensuring robustness and generalisability through interdisciplinary collaboration.
Keywords