BMC Gastroenterology (Feb 2004)

Inhibition of gastric H,K-ATPase activity and gastric epithelial cell IL-8 secretion by the pyrrolizine derivative ML 3000

  • Gupta Sandeep,
  • Hammond Charles E,
  • Goldenring James R,
  • Smolka Adam J

DOI
https://doi.org/10.1186/1471-230X-4-4
Journal volume & issue
Vol. 4, no. 1
p. 4

Abstract

Read online

Abstract Background ML 3000 ([2,2-dimethyl-6-(4-chlorophenyl)-7-phenyl-2,3-dihydro-1H-pyrrolizine-5-yl]-acetic acid) is an inhibitor of both cyclooxygenase and 5-lipoxygenase in vitro, and shows promise as a novel non-steroidal anti-inflammatory drug (NSAID). Unlike conventional NSAIDs which are associated with gastric ulcerogenic effects, ML 3000 causes little or no damage to the gastric mucosa, even though it significantly depresses gastric prostaglandin synthesis. Methods As part of an effort to clarify mechanisms underlying the gastric sparing properties of ML 3000, we studied the effects of ML 3000 on H,K-ATPase activity in vitro, on acid accumulation in isolated gastric parietal cells, and on IL-8 secretion by gastric epithelial cells in culture. Results SCH28080-sensitive H,K-ATPase activity in highly-purified pig gastric microsomes was dose-dependently inhibited by ML 3000 (IC50 = 16.4 μM). Inhibition was reversible, and insensitive to ML 3000 acidification in the pH range 2.0–8.0. In rabbit gastric parietal cells, ML 3000 dose-dependently inhibited histamine-stimulated acid accumulation (IC50 = 40 μM) and forskolin-stimulated acid accumulation (IC50 = 45 μM). Lastly, in human gastric adenocarcinoma (AGS) cells, ML 3000 dose-dependently inhibited both baseline and IL-1β-stimulated (20 ng/ml) IL-8 secretion with IC50s of 0.46 μM and 1.1 μM respectively. Conclusion The data indicate that ML 3000 affects acid-secretory mechanisms downstream of cAMP mobilization induced by histamine H2 receptor activation, that it directly inhibits H,K-ATPase specific activity, and that baseline gastric epithelial cell IL-8 secretory inhibition may be mediated by ML 3000 inhibition of 5-lipoxygenase activity. We conclude that these gastric function inhibitory data may underlie the gastric sparing properties of ML 3000.