Applied Sciences (Jul 2020)

Multi-mode Microscopic Hyperspectral Imager for the Sensing of Biological Samples

  • Zhanpeng Xu,
  • Yiming Jiang,
  • Sailing He

DOI
https://doi.org/10.3390/app10144876
Journal volume & issue
Vol. 10, no. 14
p. 4876

Abstract

Read online

In this work, we develop a multi-mode microscopic hyperspectral imager (MMHI) for the detection of biological samples in transmission imaging, reflection imaging and fluorescence mode. A hyperspectral image cube can be obtained with 5 μm spatial resolution and 3 nm spectral resolution through push-broom line scanning. To avoid possible shadows produced by the high magnification objective with a short working distance, two illumination patterns are designed to ensure the co-axiality of the illumination and detection. Three experiments for the detection of zebrafish and fingerprints and the classification of disaster-causing microalgae verify the good capability and functionality of the system. Based on the detected spectra, we can observe the impacts of β-carotene and melanin in zebrafish, hemoglobin in the fingertip, and chlorophyll in microalgae, respectively. Multi-modes can be switched freely according to the application requirement and characteristics of different samples, like transmission mode for the transparent/translucent sample, reflection mode for the opaque sample and fluorescence mode for the fluorescent sample. The MMHI system also has strong potential for the non-invasive and high-speed sensing of bio or clinical samples.

Keywords