Boletim da Sociedade Paranaense de Matemática (Jan 2018)

Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with L1 data

  • Elemine Vall Mohamed Saad Bouh,
  • A. Ahmed,
  • A. Touzani,
  • A. Benkirane

DOI
https://doi.org/10.5269/bspm.v36i1.29440
Journal volume & issue
Vol. 36, no. 1
pp. 125 – 150

Abstract

Read online

We prove existence of solutions for strongly nonlinear elliptic equations of the form $$ \left\{\begin{array}{c} A(u)+g(x,u,\nabla u)=f+\mbox {div}(\phi(u))\quad \textrm{in }\Omega, \\ u\equiv0\quad \partial \Omega. \end{array} \right.$$ Where $A(u)=-\mbox {div}(a(x,u,\nabla u))$ be a Leray-Lions operator defined in $D(A)\subset W^{1}_{0}L_\varphi(\Omega) \rightarrow W^{-1}_{0}L_\psi(\Omega)$, the right hand side belongs in $ L^{1}(\Omega)$, and $\phi\in C^{0}(\mathbb{R},\mathbb{R}^N)$, without assuming the $\Delta_{2}$-condition on the Musielak function.

Keywords