Boletim da Sociedade Paranaense de Matemática (Jan 2018)
Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with L1 data
Abstract
We prove existence of solutions for strongly nonlinear elliptic equations of the form $$ \left\{\begin{array}{c} A(u)+g(x,u,\nabla u)=f+\mbox {div}(\phi(u))\quad \textrm{in }\Omega, \\ u\equiv0\quad \partial \Omega. \end{array} \right.$$ Where $A(u)=-\mbox {div}(a(x,u,\nabla u))$ be a Leray-Lions operator defined in $D(A)\subset W^{1}_{0}L_\varphi(\Omega) \rightarrow W^{-1}_{0}L_\psi(\Omega)$, the right hand side belongs in $ L^{1}(\Omega)$, and $\phi\in C^{0}(\mathbb{R},\mathbb{R}^N)$, without assuming the $\Delta_{2}$-condition on the Musielak function.
Keywords