PLoS Pathogens (Jan 2018)

Higher sequence diversity in the vaginal tract than in blood at early HIV-1 infection.

  • Katja Klein,
  • Gabrielle Nickel,
  • Immaculate Nankya,
  • Fred Kyeyune,
  • Korey Demers,
  • Emmanuel Ndashimye,
  • Cynthia Kwok,
  • Pai-Lien Chen,
  • Sandra Rwambuya,
  • Art Poon,
  • Marshall Munjoma,
  • Tsungai Chipato,
  • Josaphat Byamugisha,
  • Peter Mugyenyi,
  • Robert A Salata,
  • Charles S Morrison,
  • Eric J Arts

DOI
https://doi.org/10.1371/journal.ppat.1006754
Journal volume & issue
Vol. 14, no. 1
p. e1006754

Abstract

Read online

In the majority of cases, human immunodeficiency virus type 1 (HIV-1) infection is transmitted through sexual intercourse. A single founder virus in the blood of the newly infected donor emerges from a genetic bottleneck, while in rarer instances multiple viruses are responsible for systemic infection. We sought to characterize the sequence diversity at early infection, between two distinct anatomical sites; the female reproductive tract vs. systemic compartment. We recruited 72 women from Uganda and Zimbabwe within seven months of HIV-1 infection. Using next generation deep sequencing, we analyzed the total genetic diversity within the C2-V3-C3 envelope region of HIV-1 isolated from the female genital tract at early infection and compared this to the diversity of HIV-1 in plasma. We then compared intra-patient viral diversity in matched cervical and blood samples with three or seven months post infection. Genetic analysis of the C2-V3-C3 region of HIV-1 env revealed that early HIV-1 isolates within blood displayed a more homogeneous genotype (mean 1.67 clones, range 1-5 clones) than clones in the female genital tract (mean 5.7 clones, range 3-10 clones) (p<0.0001). The higher env diversity observed within the genital tract compared to plasma was independent of HIV-1 subtype (A, C and D). Our analysis of early mucosal infections in women revealed high HIV-1 diversity in the vaginal tract but few transmitted clones in the blood. These novel in vivo finding suggest a possible mucosal sieve effect, leading to the establishment of a homogenous systemic infection.