Cell Reports (Aug 2018)
Pitpnc1a Regulates Zebrafish Sleep and Wake Behavior through Modulation of Insulin-like Growth Factor Signaling
Abstract
Summary: The lipid transporters of the phosphatidylinositol transfer protein (PITP) family dictate phosphoinositide compartmentalization, and specific phosphoinositides play crucial roles in signaling cascades, membrane traffic, ion channel regulation, and actin dynamics. Although PITPs are enriched in the brain, their physiological functions in neuronal signaling pathways in vivo remain ill defined. We describe a CRISPR/Cas9-generated zebrafish mutant in a brain-specific, conserved class II PITP member, pitpnc1a. Zebrafish pitpnc1a mutants are healthy but display widespread aberrant neuronal activity and increased wakefulness across the day-night cycle. The loss of Pitpnc1a increases insulin-like growth factor (IGF) signaling in the brain, and inhibition of IGF pathways is sufficient to rescue both neuronal and behavioral hyperactivity in pitpnc1a mutants. We propose that Pitpnc1a-expressing neurons alter behavior via modification of neuro-modulatory IGF that acts on downstream wake-promoting circuits. : Ashlin et al. find that CRISPR/Cas9 zebrafish mutants that lack the brain-enriched lipid transporter Pitpnc1a have dysregulated insulin-like growth factor (IGF) signaling and behavioral hyperactivity. This work suggests that Pitpnc1a normally regulates the set point of neuronal excitability by dampening IGF. Keywords: zebrafish, sleep, lipid transporter, behavior, IGF