Mathematics (Jun 2024)

Fractional Adaptive Resonance Theory (FRA-ART): An Extension for a Stream Clustering Method with Enhanced Data Representation

  • Yingwen Zhu,
  • Ping Li,
  • Qian Zhang,
  • Yi Zhu,
  • Jun Yang

DOI
https://doi.org/10.3390/math12132049
Journal volume & issue
Vol. 12, no. 13
p. 2049

Abstract

Read online

Clustering data streams has become a hot topic and has been extensively applied to many real-world applications. Compared with traditional clustering, data stream clustering is more challenging. Adaptive Resonance Theory (ART) is a powerful (online) clustering method, it can automatically adjust to learn both abstract and concrete information, and can respond to arbitrarily large non-stationary databases while having fewer parameters, low computational complexity, and less sensitivity to noise, but its limited feature representation hinders its application to complex data streams. In this paper, considering its advantages and disadvantages, we present its flexible extension for stream clustering, called fractional adaptive resonance theory (FRA-ART). FRA-ART enhances data representation by fractionally exponentiating input features using self-interactive basis functions (SIBFs) and incorporating feature interaction through cross-interactive basis functions (CIBFs) at the cost only of introducing an additionally adjustable fractional order. Both SIBFs and CIBFs can be precomputed using existing algorithms, making FRA-ART easily adaptable to any ART variant. Finally, comparative experiments on five data stream datasets, including artificial and real-world datasets, demonstrate FRA-ART’s superior robustness and comparable or improved performance in terms of accuracy, normalized mutual information, rand index, and cluster stability compared to ART and the state-of-the-art G-Stream algorithm.

Keywords