Shock and Vibration (Jan 2015)

Frequency Dependent Spencer Modeling of Magnetorheological Damper Using Hybrid Optimization Approach

  • Ali Fellah Jahromi,
  • Rama B. Bhat,
  • Wen-Fang Xie

DOI
https://doi.org/10.1155/2015/382541
Journal volume & issue
Vol. 2015

Abstract

Read online

Magnetorheological dampers have been widely used in civil and automotive industries. The nonlinear behavior of MR fluid makes MR damper modeling a challenging problem. In this paper, a frequency dependent MR damper model is proposed based on Spencer MR damper model. The parameters of the model are identified using an experimental data based hybrid optimization approach which is a combination of Genetic Algorithm and Sequential Quadratic Programming approach. The frequency in the proposed model is calculated using measured relative velocity and relative displacement between MR damper ends. Therefore, the MR damper model will be function of frequency. The mathematical model is validated using the experimental results which confirm the improvement in the accuracy of the model and consistency in the variation damping with the frequency.