Batteries (Jul 2025)
Demand-Adapting Charging Strategy for Battery-Swapping Stations
Abstract
This paper analyzes the control strategy for urban battery-swapping stations by optimizing the charging policy based on real-time battery demand and the time required for a full charge. The energy stored in available batteries serves as an electricity buffer, allowing energy to be drawn from the grid when costs or equivalent CO2 emissions are low. An optimized charging policy is derived using dynamic programming (DP), assuming average battery demand and accounting for both the costs and emissions associated with electricity consumption. The proposed algorithm uses a prediction of the expected traffic in the area as well as the expected cost of electricity on the net. Battery tests were conducted to assess charging time variability, and traffic density measurements were collected in the city of Valencia across multiple days to provide a realistic scenario, while real-time data of the electricity cost is integrated into the control proposal. The results show that incorporating traffic and electricity price forecasts into the control algorithm can reduce electricity costs by up to 11% and decrease associated CO2 emissions by more than 26%.
Keywords