AIP Advances (Jun 2016)

Direct synthesis of ultrathin SOI structure by extremely low-energy oxygen implantation

  • Yasushi Hoshino,
  • Gosuke Yachida,
  • Kodai Inoue,
  • Taiga Toyohara,
  • Jyoji Nakata

DOI
https://doi.org/10.1063/1.4954200
Journal volume & issue
Vol. 6, no. 6
pp. 065313 – 065313-6

Abstract

Read online

We performed extremely low-energy 16O+ implantation at 10 keV (Rp ∼ 25 nm) followed by annealing aiming at directly synthesizing an ultrathin Si layer separated by a buried SiO2 layer in Si(001) substrates, and then investigated feasible condition of recrystallization and stabilization of the superficial Si and the buried oxide layer by significantly low temperature annealing. The elemental compositions were analyzed by Rutherford backscattering (RBS) and secondary ion mass spectroscopy (SIMS). The crystallinity of the superficial Si layer was quantitatively confirmed by ananlyzing RBS-channeling spectra. Cross-sectional morphologies and atomic configurations were observed by transmission electron microscope (TEM). As a result, we succeeded in directly synthesizing an ultrathin single-crystalline silicon layer with ≤20 nm thick separated by a thin buried stoichiometric SiO2 layer with ≤20 nm thick formed by extremely low-energy 16O+ implantation followed by surprisingly low temperature annealing at 1050∘ C.