Journal of Lipid Research (Aug 2013)

Farnesoid X receptor activation increases cholesteryl ester transfer protein expression in humans and transgenic mice

  • Thomas Gautier,
  • Willeke de Haan,
  • Jacques Grober,
  • Dan Ye,
  • Matthias J. Bahr,
  • Thierry Claudel,
  • Niels Nijstad,
  • Theo J.C. Van Berkel,
  • Louis M. Havekes,
  • Michael P. Manns,
  • Stefan M. Willems,
  • Pancras C.W. Hogendoorn,
  • Laurent Lagrost,
  • Folkert Kuipers,
  • Miranda Van Eck,
  • Patrick C.N. Rensen,
  • Uwe J.F. Tietge

Journal volume & issue
Vol. 54, no. 8
pp. 2195 – 2205

Abstract

Read online

Cholesteryl ester transfer protein (CETP) activity results in a proatherogenic lipoprotein profile. In cholestatic conditions, farnesoid X receptor (FXR) signaling by bile acids (BA) is activated and plasma HDL cholesterol (HDL-C) levels are low. This study tested the hypothesis that FXR-mediated induction of CETP contributes to this phenotype. Patients with cholestasis and high plasma BA had lower HDL-C levels and higher plasma CETP activity and mass compared with matched controls with low plasma BA (each P < 0.01). BA feeding in APOE3*Leiden transgenic mice expressing the human CETP transgene controlled by its endogenous promoter increased cholesterol within apoB-containing lipoproteins and decreased HDL-C (each P < 0.01), while hepatic CETP mRNA expression and plasma CETP activity and mass increased (each P < 0.01). In vitro studies confirmed that FXR agonists substantially augmented CETP mRNA expression in hepatocytes and macrophages dependent on functional FXR expression (each P < 0.001). These transcriptional effects are likely mediated by an ER8 FXR response element (FXRE) in the first intron. In conclusion, using a translational approach, this study identifies CETP as novel FXR target gene. By increasing CETP expression, FXR activation leads to a proatherogenic lipoprotein profile. These results have clinical relevance, especially when considering FXR agonists as emerging treatment strategy for metabolic disease and atherosclerosis.

Keywords