Energies (Aug 2023)
Estimation of Free and Adsorbed Gas Volumes in Shale Gas Reservoirs under a Poro-Elastic Environment
Abstract
Unlike conventional gas reservoirs, fluid flow in shale gas reservoirs is characterized by complex interactions between various factors, such as stress sensitivity, matrix shrinkage, and critical desorption pressure. These factors play a crucial role in determining the behavior and productivity of shale gas reservoirs. Stress sensitivity refers to the stress changes caused by formation pressure decline during production, where the shale gas formation becomes more compressed and its porosity decreases. Matrix shrinkage, on the other hand, refers to the deformation of the shale matrix due to the gas desorption process once the reservoir pressure reaches the critical desorption pressure where absorbed gas molecules start to leave the matrix surface, causing an increase in shale matrix porosity. Therefore, the accurate estimation of gas reserves requires careful consideration of such unique and complex interactions of shale gas flow behavior when using a material balance equation (MBE). However, the existing MBEs either neglect some of these important parameters in shale gas reserve analysis or employ an iterative approach to incorporate them. Accordingly, this study introduces a straightforward modification to the material balance equation. This modification will enable more accurate estimation of shale gas reserves by considering stress sensitivity and variations in porosity during shale gas production and will also account for the effect of critical desorption pressure, water production, and water influx. By establishing a linear relationship between reservoir expansion and production terms, we eliminate the need for complex and iterative calculations. As a result, this approach offers a simpler yet effective means of estimating shale gas reserves without compromising accuracy. The proposed MBE was validated using an in-house finite element poro-elastic model which accounts for stress re-distribution and deformation effects during shale gas production. Moreover, the proposed MBE was tested using real-field data of a shale gas reservoir obtained from the literature. The results of this study demonstrate the reliability and usefulness of the modified MBE as a tool for accurately assessing free and adsorbed shale gas volumes.
Keywords