NeuroImage: Clinical (Jan 2024)

Resting state connectivity biomarkers of seizure freedom after epilepsy surgery

  • Eva Martinez-Lizana,
  • Armin Brandt,
  • Matthias Dümpelmann,
  • Andreas Schulze-Bonhage

Journal volume & issue
Vol. 44
p. 103673

Abstract

Read online

Alterations in brain networks may cause the lowering of the seizure threshold and hypersynchronization that underlie the recurrence of unprovoked seizures in epilepsy. The aim of this work is to estimate functional network characteristics, which may help predicting outcome of epilepsy surgery.Twenty patients were studied (11 females, 9 males, mean age 33 years) with scalp-recorded HD-EEG in resting state (eyes closed, no interictal discharges) before intracranial evaluation, which allowed the precise determination of the epileptogenic zone. Dipole source time courses in the brain were estimated using Weighted Minimum Norm Estimate based on HD-EEG signals. Information inflow and outflow of atlas-based brain regions were computed using partial directed connectivity. A set of graph measures for pairwise connections in standard EEG frequency bands was calculated.After epilepsy surgery 10 patients were seizure-free (Engel 1a) and 10 patients continued suffering from seizures (Engel outcome worse than 1a). Inflow of the regions containing the epileptogenic zone in the beta and delta frequency bands was significantly lower in patients who achieved seizure-freedom after surgery, compared with patients who continued to have seizures (p = 0.012, and p = 0.026, respectively). Average path length in the beta frequency band was significantly higher in patients who achieved seizure freedom (p = 0.012). In the delta frequency band, local efficiency and clustering coefficient were significantly higher in patients who achieved seizure freedom (0.033, 0.046).In patients who achieved seizure freedom after surgery, the preoperative analysis of the epileptic network exhibited stronger separation of the region containing the seizure onset zone, with less inflow of information. In contrast, shorter paths within the epileptic network may facilitate hypersynchronous neuronal activity and thus the recurrence of seizures in non-seizure free patients. This study supports the hypothesis that epileptic network properties might help to define suitable candidates for epilepsy surgery.

Keywords