Scientific Reports (Nov 2021)

Combined wide-field optical coherence tomography angiography density map for high myopic glaucoma detection

  • Yu Jeong Kim,
  • Kyeong Ik Na,
  • Han Woong Lim,
  • Mincheol Seong,
  • Won June Lee

DOI
https://doi.org/10.1038/s41598-021-01661-0
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 9

Abstract

Read online

Abstract The present study aimed to evaluate the diagnostic ability of wide-field optical coherence tomography angiography (OCTA) density map for detection of glaucomatous damage in high myopic (HM) eyes and to further compare the diagnostic ability of OCTA with that of conventional imaging approaches including red-free photography and swept-source OCT (SS-OCT) wide-field maps. A total of 77 healthy HM eyes and 72 HM eyes with open angle glaucoma (OAG) participated in this retrospective observational study. Patients underwent a comprehensive ocular examination, including wide-field SS-OCT scan and peripapillary area and macular OCTA scans. An integrated OCTA density map thereafter was merged by vascular landmark-guided superimposition of peripapillary and macular superficial vascular density maps onto the red-free photography (resulting in the OCTA-PanoMap). Glaucoma specialists then determined the presence of glaucomatous damage in HM eyes by reading the OCTA-PanoMap and compared its sensitivity and specificity with those of conventional images. Sensitivity and specificity of OCTA-PanoMap for HM-OAG diagnosis was 94.4% and 96.1%, respectively. Compared with other imaging methods, the sensitivity of OCTA-PanoMap was significantly higher than that of red-free photography (P = 0.022) and comparable to that of wide-field SS-OCT maps. Specificity of OCTA-PanoMap was significantly higher than those of other conventional imaging methods (except for wide-field thickness map). The OCTA-PanoMap showed good diagnostic ability for discrimination of HM-OAG eyes from healthy HM eyes. As a complementary method of an alternative imaging modality, OCTA-PanoMap can be a useful tool for detection of HM-OAG.