Artificial Intelligence in the Life Sciences (Dec 2023)

Artificial intelligence systems for the design of magic shotgun drugs

  • José Teófilo Moreira-Filho,
  • Meryck Felipe Brito da Silva,
  • Joyce Villa Verde Bastos Borba,
  • Arlindo Rodrigues Galvão Filho,
  • Eugene N Muratov,
  • Carolina Horta Andrade,
  • Rodolpho de Campos Braga,
  • Bruno Junior Neves

Journal volume & issue
Vol. 3
p. 100055

Abstract

Read online

Designing magic shotgun compounds, i.e., compounds hitting multiple targets using artificial intelligence (AI) systems based on machine learning (ML) and deep learning (DL) approaches, has a huge potential to revolutionize drug discovery. Such intelligent systems enable computers to create new chemical structures and predict their multi-target properties at a low cost and in a time-efficient manner. Most examples of AI applied to drug discovery are single-target oriented and there is still a lack of concise information regarding the application of this technology for the discovery of multi-target drugs or drugs with broad-spectrum action. In this review, we focus on current developments in AI systems for the next generation of automated design of multi-target drugs. We discuss how classical ML methods, cutting-edge generative models, and multi-task deep neural networks can help de novo design and hit-to-lead optimization of multi-target drugs. Moreover, we present state-of-the-art workflows and highlight some studies demonstrating encouraging experimental results, which pave the way for de novo drug design and multi-target drug discovery.

Keywords