e-Polymers (Sep 2022)

Epoxy/melamine polyphosphate modified silicon carbide composites: Thermal conductivity and flame retardancy analyses

  • Shi Xuejun,
  • Wei Baoting,
  • Han Yongjun,
  • Du Xiangxiang,
  • He Guoxu

DOI
https://doi.org/10.1515/epoly-2022-0070
Journal volume & issue
Vol. 22, no. 1
pp. 742 – 751

Abstract

Read online

Silicon carbide (SiC) was modified by melamine polyphosphate (MPP)-modified silicone to form SiC-MPP, then incorporated into epoxy resin (EP) for developing thermally resistant composites, which showed thermal conductivity and flame retardancy performance. The EP/SiC-MPP composites were prepared by blending and cured under 60°C for 2 h and 150°C for 8 h. The grafting degree of SiC-MPP was analyzed using Fourier transform Infrared, scanning electron microscope, and thermogravimetric measurements. The flame retardancy of the EP/SiC-MPP composites was studied by UL-94 vertical combustion and cone calorimetry test. The results showed that for EP/SiC-MPP containing 20 wt%, the UL-94 was case V1. Also compared to pure epoxy, the peak heat release rate (PHRR) of composites was reduced from 800 to 304 kW·m−2. The thermal conductivity of EP/SiC-M20 composites was 0.53 W·m−1·K−1, almost 2.5-fold higher than pure epoxy (0.21 W·m−1·K−1). The as-prepared EP/SiC-MPP composites exhibited enhanced flame retardancy and thermal conductivity. Based on analyses performed, these composites took credit-related applications.

Keywords