Scientific Reports (Sep 2024)

Evaluation of the cytotoxicity and antibacterial activity of nano-selenium prepared via gamma irradiation against cancer cell lines and bacterial species

  • M. Salah,
  • Nesreen A. S. Elkabbany,
  • Abir M. Partila

DOI
https://doi.org/10.1038/s41598-024-69730-8
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 25

Abstract

Read online

Abstract A recent scientific investigation has shown promising results of selenium nanoparticles (SeNPs) for the anticancer and antimicrobial activities. This study aims to evaluate the effects of PVP SeNPs on bacterial strains, including Staphylococcus aureus (S. aureus), Bacillus cereus (B. cereus), Klebsiella pneumoniae (K. pneumoniae), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa). Also, its antitumor activity against the MRC-5 carcinoma cell line. SeNPs were prepared via gamma irradiation using PVP as a capping agent, and their size and morphological structure were determined using HRTEM. The size of the SeNPs ranged from 36 to 66.59 nm. UV–vis spectra confirmed the formation of SeNPs, while FTIR measurement confirmed a change in the PVP structure after adding selenium nanoparticles. The highest effect was reported on HepG2 by an IC50 with a value of 8.87 µg/ml, followed by HeLa, PC3, MCF-7, and Caco2 cell lines, respectively. Furthermore, ZOI reached 36.33 ± 3.05 mm. The best value of the minimum inhibitory concentration (MIC) was 0.313 µg/ml. Scanning electron microscope (SEM) imaging against bacteria showed deformations and distortions in their structures. Transmission electron (TEM) revealed ultrastructure changes in treated bacteria because of the free radicals that made cytotoxicity which confirmed by Electron spin resonance (ESR).

Keywords