Applied Sciences (Jul 2020)

Configurational Effects on Strain and Doping at Graphene-Silver Nanowire Interfaces

  • Frank Lee,
  • Manoj Tripathi,
  • Peter Lynch,
  • Alan B. Dalton

DOI
https://doi.org/10.3390/app10155157
Journal volume & issue
Vol. 10, no. 15
p. 5157

Abstract

Read online

Graphene shows substrate-dependent physical and electronic properties. Here, we presented the interaction between single-layer graphene and silver nanowire (AgNW) in terms of physical straining and doping. We observed a snap-through event for single-layer graphene/AgNW at a separation of AgNWs of 55 nm, beyond the graphene suspended over the nanowires. The adhesion force between the Atomic Force Microscopy (AFM) tip apex and the suspended graphene was measured as higher than the conformed one by 1.8 nN. The presence of AgNW modulates the Fermi energy level of graphene and reduces the work function by 0.25 eV, which results in n-type doping. Consequently, a lateral p-n-p junction is formed with single AgNW. The correlation Raman plot between G-2D modes reveals the increment of strain in graphene of 0.05% due to the curvature around AgNW, and 0.01% when AgNW lies on the top of graphene. These results provide essential information in inspecting the physical and electronic influences from AgNW.

Keywords