ISPRS International Journal of Geo-Information (Oct 2024)
Exploring Georeferenced Augmented Reality for Architectural Visualization with Unmanned Aerial Vehicles
Abstract
Unmanned aerial systems (UASs) offer a less invasive solution for accessing remote areas and sites, making them valuable in Architecture, Engineering, Construction, and Operation (AECO). Their ease of use, ability to reach previously inaccessible areas, and sensor integration provide new project perspectives. Augmented Reality (AR), which allows for the real-time insertion of virtual elements into physical spaces, is also being explored in the AECO industry. Recognizing the potential of these technologies, this research aims to integrate them for on-site building model visualization. This article presents the development of resources to visualize building design implementation in AR, which is supported by UASs through georeferencing. The system development process included establishing the software architecture, creating interface prototypes, and constructing the model. It was possible to visualize the building model in AR within the real world; however, limitations were identified regarding the UAS used and its Application Programming Interface, which affected the aircraft’s programmed trajectory. The contribution of this paper lies in exploring the utilization of georeferenced AR enabled by UAS for visualizing architectural designs on site, detailing the steps and strategies employed to achieve this, highlighting the limitations of the chosen approach, and proposing potential solutions to the issues identified in the research.
Keywords