International Journal of Molecular Sciences (Jul 2015)

β-Radiation Stress Responses on Growth and Antioxidative Defense System in Plants: A Study with Strontium-90 in Lemna minor

  • Arne Van Hoeck,
  • Nele Horemans,
  • May Van Hees,
  • Robin Nauts,
  • Dries Knapen,
  • Hildegarde Vandenhove,
  • Ronny Blust

DOI
https://doi.org/10.3390/ijms160715309
Journal volume & issue
Vol. 16, no. 7
pp. 15309 – 15327

Abstract

Read online

In the following study, dose dependent effects on growth and oxidative stress induced by β-radiation were examined to gain better insights in the mode of action of β-radiation induced stress in plant species. Radiostrontium (90Sr) was used to test for β-radiation induced responses in the freshwater macrophyte Lemna minor. The accumulation pattern of 90Sr was examined for L. minor root and fronds separately over a seven-day time period and was subsequently used in a dynamic dosimetric model to calculate β-radiation dose rates. Exposing L. minor plants for seven days to a 90Sr activity concentration of 25 up to 25,000 kBq·L−1 resulted in a dose rate between 0.084 ± 0.004 and 97 ± 8 mGy·h−1. After seven days of exposure, root fresh weight showed a dose dependent decrease starting from a dose rate of 9.4 ± 0.5 mGy·h−1. Based on these data, an EDR10 value of 1.5 ± 0.4 mGy·h−1 was estimated for root fresh weight and 52 ± 17 mGy·h−1 for frond fresh weight. Different antioxidative enzymes and metabolites were further examined to analyze if β-radiation induces oxidative stress in L. minor.

Keywords