eXPRESS Polymer Letters (Jun 2013)

Surface characterization of plasma treated polymers for applications as biocompatible carriers

  • L. Bacakova,
  • E. Stranska,
  • N. Slepickova Kasalkova,
  • P. Slepicka,
  • V. Svorcik

DOI
https://doi.org/10.3144/expresspolymlett.2013.50
Journal volume & issue
Vol. 7, no. 6
pp. 535 – 545

Abstract

Read online

The objective of this work was to determine surface properties of polymer surfaces after plasma treatment with the aim of further cytocompatibility tests. Examined polymers were poly(ethyleneterephthalate) (PET), high-density polyethylene (HDPE), poly(tetrafluoro-ethylene) (PTFE) and poly(L-lactic acid) (PLLA). Goniometry has shown that the plasma treatment was immediately followed by a sharp decrease of contact angle of the surface. In the course of ageing the contact angle increased due to the reorientation of polar groups into the surface layer of polymer. Ablation of polymer surfaces was observed during the degradation. Decrease of weight of polymer samples was measured by gravimetry. Surface morphology and roughness was studied by atomic force microscopy (AFM). The PLLA samples exhibited saturation of wettability (aged surface) after approximately 100 hours, while the PET and PTFE achieved constant values of contact angle after 336 hours. Irradiation by plasma leads to polymer ablation, the highest mass loss being observed for PLLA. The changes in the surface roughness and morphology were observed, a lamellar structure being induced on PTFE. Selected polymer samples were seeded with VSMC (vascular smooth muscle cells) and the adhesion and proliferation of cells was studied. It was proved that certain combination of input treatment parameters led to improvement of polymer cytocompatibility. The plasma exposure was confirmed to significantly improve the PTFE biocompatibility.

Keywords