Toxins (Jun 2019)

Inhibition of Kv2.1 Potassium Channels by MiDCA1, A Pre-Synaptically Active PLA<sub>2</sub>-Type Toxin from <i>Micrurus dumerilii carinicauda</i> Coral Snake Venom

  • Niklas Schütter,
  • Yuri Correia Barreto,
  • Vitya Vardanyan,
  • Sönke Hornig,
  • Stephen Hyslop,
  • Sérgio Marangoni,
  • Léa Rodrigues-Simioni,
  • Olaf Pongs,
  • Cháriston André Dal Belo

DOI
https://doi.org/10.3390/toxins11060335
Journal volume & issue
Vol. 11, no. 6
p. 335

Abstract

Read online

MiDCA1, a phospholipase A2 (PLA2) neurotoxin isolated from Micrurus dumerilii carinicauda coral snake venom, inhibited a major component of voltage-activated potassium (Kv) currents (41 ± 3% inhibition with 1 μM toxin) in mouse cultured dorsal root ganglion (DRG) neurons. In addition, the selective Kv2.1 channel blocker guangxitoxin (GxTx-1E) and MiDCA1 competitively inhibited the outward potassium current in DRG neurons. MiDCA1 (1 µM) reversibly inhibited the Kv2.1 current by 55 ± 8.9% in a Xenopus oocyte heterologous system. The toxin showed selectivity for Kv2.1 channels over all the other Kv channels tested in this study. We propose that Kv2.1 channel blockade by MiDCA1 underlies the toxin’s action on acetylcholine release at mammalian neuromuscular junctions.

Keywords