Sensors (Nov 2008)

Multifunctional Polypeptide EQCN Sensors: Probing the Cysteamine-Glutathione Film Permeability with Hg(II) Ions

  • Julia Dallas,
  • Maria Hepel

DOI
https://doi.org/10.3390/s8117224
Journal volume & issue
Vol. 8, no. 11
pp. 7224 – 7240

Abstract

Read online

Multifunctional films are the basis of biosensors and play an important role in the emerging field of nanobioelectronics. In this work, films of a tripeptide glutathione (GSH) immobilized on a self-assembled monolayer of cysteamine (CA-SAM) on a quartz crystal Au piezosensor have been synthesized and characterized using electrochemical quartz crystal nanogravimetry (EQCN) with a Hg(II) ion probe. It has been found that in contrast to previously studied Au/GSH films, the Au/CA-GSH films strongly hinder the formation of Hg0 with bulk properties while still allowing for relatively easy permeation by Hg(II) ions. This results in complete disappearance of the sharp Hg0 electrodissolution peak which is observed on bare Au and Au/GSH piezosensors. The multiple-peak anodic behavior of Au/CA and bare Au is replaced by a single high-field anodic peak of mercury reoxidation in the case of Au/CA-GSH sensors. The mass-to-charge plots indicate predominant ingress/egress of Hg(II) to/from the film. The strong hindrance of CA-SAM to bulk-Hg0 formation is attributed to film-stabilizing formation of surface (CA)2Hg2+ complexes with conformation evaluated by ab initio quantum mechanical calculations of electronic structure using Hartree-Fock methods. The associates CA-GSH provide an additional functionality of the side sulfhydryl group which is free for interactions, e.g. with heavy metals. It is proposed that in the film, the CA-GSH molecules can assume open (extended) conformation or bent hydrogen-bonded conformation with up to four possible internal hydrogen bonds.

Keywords