Virtual Reality & Intelligent Hardware (Feb 2024)
Effective data transmission through energy-efficient clus- tering and Fuzzy-Based IDS routing approach in WSNs
Abstract
Wireless sensor networks (WSN) gather information and sense information samples in a certain region and communicate these readings to a base station (BS). Energy efficiency is considered a major design issue in the WSNs, and can be addressed using clustering and routing techniques. Information is sent from the source to the BS via routing procedures. However, these routing protocols must ensure that packets are delivered securely, guar- anteeing that neither adversaries nor unauthentic individuals have access to the sent information. Secure data transfer is intended to protect the data from illegal access, damage, or disruption. Thus, in the proposed model, secure data transmission is developed in an energy-effective manner. A low-energy adaptive clustering hierarchy (LEACH) is developed to efficiently transfer the data. For the intrusion detection systems (IDS), Fuzzy logic and artificial neural networks (ANNs) are proposed. Initially, the nodes were randomly placed in the network and initialized to gather information. To ensure fair energy dissipation between the nodes, LEACH randomly chooses cluster heads (CHs) and allocates this role to the various nodes based on a round-robin management mechanism. The intrusion-detection procedure was then utilized to determine whether intruders were present in the network. Within the WSN, a Fuzzy interference rule was utilized to distinguish the malicious nodes from legal nodes. Subsequently, an ANN was employed to distinguish the harmful nodes from suspicious nodes. The effectiveness of the proposed approach was validated using metrics that attained 97% accuracy, 97% specificity, and 97% sensitivity of 95%. Thus, it was proved that the LEACH and Fuzzy-based IDS approaches are the best choices for securing data transmission in an energy-efficient manner.