International Journal of Molecular Sciences (Mar 2023)

Cellular FXIII in Human Macrophage-Derived Foam Cells

  • Laura Somodi,
  • Emőke Horváth,
  • Helga Bárdos,
  • Barbara Baráth,
  • Dávid Pethő,
  • Éva Katona,
  • József Balla,
  • Nicola J. Mutch,
  • László Muszbek

DOI
https://doi.org/10.3390/ijms24054802
Journal volume & issue
Vol. 24, no. 5
p. 4802

Abstract

Read online

Macrophages express the A subunit of coagulation factor XIII (FXIII-A), a transglutaminase which cross-links proteins through Nε-(γ-L-glutamyl)-L-lysyl iso-peptide bonds. Macrophages are major cellular constituents of the atherosclerotic plaque; they may stabilize the plaque by cross-linking structural proteins and they may become transformed into foam cells by accumulating oxidized LDL (oxLDL). The combination of oxLDL staining by Oil Red O and immunofluorescent staining for FXIII-A demonstrated that FXIII-A is retained during the transformation of cultured human macrophages into foam cells. ELISA and Western blotting techniques revealed that the transformation of macrophages into foam cells elevated the intracellular FXIII-A content. This phenomenon seems specific for macrophage-derived foam cells; the transformation of vascular smooth muscle cells into foam cells fails to induce a similar effect. FXIII-A containing macrophages are abundant in the atherosclerotic plaque and FXIII-A is also present in the extracellular compartment. The protein cross-linking activity of FXIII-A in the plaque was demonstrated using an antibody labeling the iso-peptide bonds. Cells showing combined staining for FXIII-A and oxLDL in tissue sections demonstrated that FXIII-A-containing macrophages within the atherosclerotic plaque are also transformed into foam cells. Such cells may contribute to the formation of lipid core and the plaque structurization.

Keywords