BMC Genomics (Mar 2024)
Genome-wide analysis and functional validation reveal the role of late embryogenesis abundant genes in strawberry (Fragaria × ananassa) fruit ripening
Abstract
Abstract Background Late embryogenesis abundant (LEA) proteins play important roles in plant growth and development, as well as stresses responsiveness. Nowadays, it has been found that LEAs also have function in fruit ripening. However, the comprehensive analysis on a genome-wide basis of LEA family remains limited, and the role of LEA in fruit ripening has not been fully explored yet, especially in strawberry, an economic important plant and ideal material for studying fruit ripening. Results In this study, a total of 266 putative LEA proteins were identified and characterized in strawberry genome. Subcellular localization prediction indicated that they were mostly localized in chloroplast, cytoplasm and nucleus. Duplication events detection revealed that whole genome duplication or segmental was the main driver for the expansion of LEA family in strawberry. The phylogenetic analysis suggested that FaLEAs were classified into eight groups, among which, LEA2 was the largest subgroup with 179 members, followed by LEA3, dehydrin (DHN), LEA4 and SMP (seed maturation protein). The LEA1 and DHN groups were speculated to play dominant roles in strawberry fruit development and ripening, according to their larger proportion of members detected as differentially expressed genes during such process. Notably, the expression of FaLEA167 belonging to LEA1 group was altered by strawberry maturation, and inhibited by overexpression of negative regulators of ripening (a cytosolic/plastid glyceraldehyde-3-phosphate dehydrogenase, FaGAPC2 and a cytosolic pyruvate kinase, FaPKc2.2). Subsequently, overexpression of FaLEA167 significantly increased the percentage of fruit at green stage, while reduced the full red fruit proportion. In consistent, the anthocyanins content and the fruit skin color variable reflecting a range from greenness to redness (a* value) were significantly reduced. Whereas, FaLEA167 overexpression apparently up-regulated citric acid, soluble protein and malondialdehyde content, but had no obvious effects on total soluble solids, sugar, flavonoids, phenolics content and antioxidant capacity. Conclusions These findings not only provided basic information of FaLEA family for further functional research, but also revealed the involvement of FaLEA167 in negatively regulating strawberry fruit ripening, giving new insights into understanding of FaLEA functions.
Keywords