E3S Web of Conferences (Jan 2019)

The Capacity Optimization of Wind-Photovoltaic-Thermal Energy Storage Hybrid Power System

  • Li Jingli,
  • Qi Wannian,
  • Yang Jun,
  • He Yi,
  • Luo Jingru,
  • Guo Su

DOI
https://doi.org/10.1051/e3sconf/201911802054
Journal volume & issue
Vol. 118
p. 02054

Abstract

Read online

This paper proposes a Wind-Photovoltaic-Thermal Energy Storage hybrid power system with an electric heater. The proposed system consists of wind subsystem, photovoltaic subsystem, electric heater, thermal energy storage and steam turbine unit. The electric heater is used to convert the redundant electricity from wind or photovoltaic subsystem into heat, which is stored in thermal energy storage. When the system output is less than the load demand, thermal energy storage system releases heat to generate electricity. In this paper, the optimal objective is to minimize the levelized cost of energy and maximize the utilization rates of renewable energy and transmission channel. The fitness function is compiled according to the scheduling strategy, and the capacity optimization problem is solved by particle swarm optimization algorithm in MATLAB. The case analysis show that the proposed system can effectively increase the utilization rate of renewable energy and transmission channel.