Jurnal Komputer Terapan (Nov 2017)
Prediksi Ketepatan Waktu Lulus Mahasiswa dengan k-Nearest Neighbor dan Naïve Bayes Classifier
Abstract
Salah satu aspek pengukuran kualitas dalam evaluasi keberhasilan penyelenggaraan pendidikan tinggi adalah ketepatan lulus mahasiswa. Jumlah prosentase mahasiswa yang lulus tepat waktu menjadi indikator keberhasilan pelaksanaan proses belajar mengajar di suatu program studi. Penelitian ini menawarkan penggunaan metode penggalian data untuk memprediksi waktu lulus mahasiswa menggunakan dua metode yaitu k-Nearest Neighbour dan Naïve Bayes Classifier. Hasil dari penelitian ini berupa sistem yang dapat memprediksi ketepatan waktu lulus. Uji coba dilakukan dengan menggunakan data lulusan mahasiswa D3 Sistem Informasi Universitas Airlangga. Hasil uji coba menunjukkan bahwa metode k-Nearest Neighbor menghasilkan akurasi lebih tinggi dibandingkan dengan Naïve Bayes Classifier. Akurasi tertinggi diperoleh dengan menggunakan metode k-Nearest Neighbor yaitu sebesar 98.7%. Oleh karena itu dapat disimpulkan bahwa sistem yang dibangun pada penelitian ini mampu memprediksi ketepatan waktu lulus dengan akurasi cukup tinggi.