Open Life Sciences (Apr 2024)
Transcriptome analysis of adipose tissue in grazing cattle: Identifying key regulators of fat metabolism
Abstract
The taste and tenderness of meat are the main determinants of carcass quality in many countries. This study aimed to discuss the mechanisms of intramuscular fat deposition in grazing and house-breeding cattle. We performed transcriptome analysis to characterize messenger RNA and microRNA (miRNA) expression profiles. A total of 456 and 66 differentially expressed genes (DEGs) and differentially expressed (DE) miRNAs were identified in the adipose tissue of grazing and house-breeding cattle. Kyoto Encyclopedia of Genes and Genomes pathway analysis identified the association of DEGs with fatty acid metabolism, fatty acid degradation, peroxisome proliferator-activated receptors signaling pathway, adenosine monophosphate-activated protein kinase signaling pathway, adipocytokine signaling pathway, and the association of DE miRNAs with mitogen-activated protein kinase signaling pathway. Apolipoprotein L domain containing 1, pyruvate dehydrogenase kinase 4, and sphingosine-1-phosphate lyase 1 genes may be the key regulators of fat metabolism in grazing cattle. Finally, we found that miR-211 and miR-331-5p were negatively correlated with the elongation of very long-chain fatty acids protein 6 (ELOVL6), and miR-331-5p might be the new regulator involved in fat metabolism. The results indicated that ELOVL6 participated in various functions and pathways related to fat metabolism. Meanwhile, miR-331-5p, as a new regulator, might play an essential role in this process. Our findings laid a more in-depth and systematic research foundation for the formation mechanism and characteristics of adipose tissue in grazing cattle.
Keywords