Agronomy (Nov 2022)

Allelopathic Activity of <i>Annona reticulata</i> L. Leaf Extracts and Identification of Three Allelopathic Compounds for the Development of Natural Herbicides

  • Mst. Rokeya Khatun,
  • Shunya Tojo,
  • Toshiaki Teruya,
  • Hisashi Kato-Noguchi

DOI
https://doi.org/10.3390/agronomy12112883
Journal volume & issue
Vol. 12, no. 11
p. 2883

Abstract

Read online

Using plant-based allelopathic compounds might be a potent substitute to help mitigate the effects of synthetic herbicides. Annona reticulata L. is often planted for its fruit in residential gardens. This plant is well-documented for its diverse ethnomedicinal uses. However, there is no information in the literature on the allelopathic potential of A. reticulata leaves. Therefore, the allelopathic potential and relevant allelopathic compounds of A. reticulata leaves were investigated in this study. The bioassays were carried out using a completely randomized experimental layout (CRD), and the resulting data were analyzed using one-way ANOVA at p ≤ 0.05. Aqueous methanol extracts of A. reticulata leaves significantly inhibited the growth of three dicots and three monocots (Lepidium sativum L., Medicago sativa L., Lactuca sativa L., Echinochloa crus-galli (L.) P. Beauv., Lolium multiflorum Lam., and Phleum pratense L., respectively). The level of growth inhibition was proportional to the A. reticulata extract concentration. Three compounds were purified through different chromatographic steps, and their structures were determined using spectroscopy and identified as loliolide, 5-hydroxy-3,4-dimethyl-5-pentylfuran-2(5H)-one, and 3,4-dihydroxyphenylethanol. The 5-hydroxy-3,4-dimethyl-5-pentylfuran-2(5H)-one had the greatest effect on suppressing cress root growth, while loliolide had the greatest effect on suppressing timothy shoot growth. The values for 50% seedling growth suppression showed that the compound with the maximum inhibitory activity was loliolide, followed by 5-hydroxy-3,4-dimethyl-5-pentylfuran-2(5H)-one and 3,4-dihydroxyphenylethanol. Therefore, this result suggests that the three compounds might be responsible for the allelopathic effects of A. reticulata leaf extracts, and these compounds have the potential to be used to develop effective bioherbicides.

Keywords