EBioMedicine (Dec 2017)

MSBIS: A Multi-Step Biomedical Informatics Screening Approach for Identifying Medications that Mitigate the Risks of Metoclopramide-Induced Tardive Dyskinesia

  • Dong Xu,
  • Alexandrea G. Ham,
  • Rickey D. Tivis,
  • Matthew L. Caylor,
  • Aoxiang Tao,
  • Steve T. Flynn,
  • Peter J. Economen,
  • Hung K. Dang,
  • Royal W. Johnson,
  • Vaughn L. Culbertson

DOI
https://doi.org/10.1016/j.ebiom.2017.11.015
Journal volume & issue
Vol. 26, no. C
pp. 132 – 137

Abstract

Read online

In 2009 the U.S. Food and Drug Administration (FDA) placed a black box warning on metoclopramide (MCP) due to the increased risks and prevalence of tardive dyskinesia (TD). In this study, we developed a multi-step biomedical informatics screening (MSBIS) approach leveraging publicly available bioactivity and drug safety data to identify concomitant drugs that mitigate the risks of MCP-induced TD. MSBIS includes (1) TargetSearch (http://dxulab.org/software) bioinformatics scoring for drug anticholinergic activity using CHEMBL bioactivity data; (2) unadjusted odds ratio (UOR) scoring for indications of TD-mitigating effects using the FDA Adverse Event Reporting System (FAERS); (3) adjusted odds ratio (AOR) re-scoring by removing the effect of cofounding factors (age, gender, reporting year); (4) logistic regression (LR) coefficient scoring for confirming the best TD-mitigating drug candidates. Drugs with increasing TD protective potential and statistical significance were obtained at each screening step. Fentanyl is identified as the most promising drug against MCP-induced TD (coefficient: −2.68; p-value < 0.01). The discovery is supported by clinical reports that patients fully recovered from MCP-induced TD after fentanyl-induced general anesthesia. Loperamide is identified as a potent mitigating drug against a broader range of drug-induced movement disorders through pharmacokinetic modifications. Using drug-induced TD as an example, we demonstrated that MSBIS is an efficient in silico tool for unknown drug-drug interaction detection, drug repurposing, and combination therapy design.

Keywords